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プロローク゛－ 合理性と意思決定規則 

 

 合理的であるとは、日常的には、「理性によって納得できる、正しい論理にかなっている、無駄を省

き最大の効果を挙げるさま、うまく説明が付くさま」とかいった意味で使われる。そして、不合理(原理

原則に反する。)、非合理(原理原則を欠いている。)、反合理(合理的な考え方、行動に反対する。)、

感傷的、独断的といった意味の対義語として位置付けられている。 

 ところで多くの工学システムにおいて、経済性が唯一の基準であることが広く認知されていた時代

においては、「最終目標＝経済性」であり、合理的な意思決定とは、経済性の無駄を省き最大の効

果を挙げること、といえた。しかし社会環境の変化が激しく価値観の多様化した近年においては、最

終目標は先のように単直で単一ではなく、一般に複数の属性から構成されると考えられる。このため

決定に際してその重要な属性が抜けていれば、それは非合理であり、属性間の重要度が決定に正

当に反映されていなければ不合理である。さらに単独ではなく複数の意思決定主体間の決定にお

いては、総体の意思が反映されないような決定は独断的であり、結果として時には反合理な行動に

結び付く恐れがある。従って近年では、単に意思決定といっても必然的に多属性下で行われるもの

を意味し、わざわざ多目的と断らなくてもよいのかも知れない。しかし混乱を避けるため、以下では多

目的性を意識する時には多目的という接頭語を用いることにする。 

 ところで、意思決定とは「選択を正当化する理由付けを探すことだ」との指摘があるように、ある選択

肢をなぜ選んだのかその理由が自他に対して容易に説明できて、その正しさが説明できる必要があ

る。このためには、対象とする意思決定の最終目標が何であるのか、即ち価値の構造を明確にして

おくことがまず重要となり、次に適用する意思決定規則の妥当性が問題となる。 

 ところで意思決定規則の適用においても、実行し易いヒューリステイックが時と場合に応じて使い分

けられるため、幾つかの種類が存在するので以下に紹介しておく。 

 ある属性において低い評価を別の属性における高い評価が補って総合的に評価されるような場合、

これらの属性間には補償関係があるといわれる。意思決定規則は、属性間の補償関係を認めるかど

うかで、補償型と非補償型とに大別される。非補償型のものとしては、以下のものが知られている。 

 選択肢の対の中で、少なくとも一つの属性において他方より望ましく、その他の全ての属性におい

て同等に望ましいかそれ以上であるような一方は他方に対して優越しているという。優越性ルール

(dominance rule)とは、選択肢の対の中から一方を選ぶときに優越する方を取るような規定である。 

 また、属性毎に望ましいと考えられるある基準値をあらかじめ設定し、全ての属性においてそれ以

上であるような選択肢を選ぶのが、連言ルール(conjunctive rule)で、一つでも満たすものなら選択し

てよいというのが選言ルール(disjunctive rule)である。 

 さらに、属性間の重要度に順序付けが可能な場合に、まず重要度の一番高い属性のみから見て

最も好ましいものをとる。それが複数個あれば、次には、二番目に重要な属性で比較する。こうした

手続きを順次繰り返していくのが辞書的ルール(lexicographic rule)である。排除ルール(elimination 

by aspect rule)は、基準値を満たさないものを次々に排除していくもので、辞書的ルールの裏返しの

ような関係にある。一方、補償型のルールとしては以下のものがある。 

 勝率最大化ルール(maximizing number of attributes with greater attractiveness rule)は、比較対

間で、相手より優れている属性の数が多い方を選ぶようなルールである。また、効用差加算ルール
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(addition of utility difference rule)や効用加算ルール(addition of utilities rule)は、比較対間で優れ

ている属性の数を単に数えるだけではなく、その程度を定量的に評価して順位を決めようとするもの

である。前者は属性毎に優越性の差を値として与えその合計で優劣を決める。一方、後者は多属性

効用理論の標準的なルールであって、属性毎の効用値の和を利用するものであり、関数の与え方で

種々の効用の表現が可能である。 

 さらに、プロダクション・システム(PS)利用ルール(production system based aggregation rule)は、例

えば、「もし生産効率が同じなら、品質の優れた生産ラインの方がよい。」といった IF-THEN 型のプロ

ダクションルールを用いて意思決定者の選好を表現しようとする試みである。人間の自然な意思決

定手順を模擬できるが、複雑な問題では、条件部(IF)と帰結部(THEN)の組み合せは某大となるため

現実的な対応は容易でない。 

 

(演習)日常経験する各ルールの具体例を挙げよ。 

 

まとめ：一定の系統的手順に基づいて決められた価値の構造に従って、意思決定則が正しく適用さ

れているものを合理的な意思決定と呼ぶ。 
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1． はじめに 

 

 H.A.Simon によれば、人間は直接解くことが困難な複雑で大規模な問題解決に遭遇した場合、一

般に次のような手順をとるという。まずより理解し易い複数の副問題への分割を考えてみる。次にこう

した問題の細分化を帰着する副問題が直接解けるところまで続けていき、個々の副問題の解を得る。

そして最終的にこれらの中から元の問題の解決に役立つと思われる結果を試行錯誤的に選び出し

ながら合成していくことで問題解決に至ろうとする。そしてこうした手順における一般的な過程として、

発見過程(intelligence phase)、設計過程(design phase)、選択過程(choice phase)の3つを挙げてい

る。 

 一方、A.D.Hall は、システムエンジニヤリングの形態学的な整理を行い、問題解決の論理的な展

開手順として、問題の定義(Problem definition)、価値システムの設計(Value system design)、システ

ムの合成(System synthesis)、システム解析(System analysis)、代替案の最適化(Optimization of 

alter-natives)、意思決定(Decision making)、実行計画(Planning for action)という７つのステップを示

している。 

 これらの考え方に共通していえることは、一挙に問題解決が不可能なとき、問題の規模や複雑さの

程度に応じて考察の範囲を限定しながら段階を踏むという接近法は、人間の思考範囲の限界を考

えれば合理性に優れた常套的手順の一つと考えてよいということである。 

 現実に、一つのプロセスを工業的に完成させていく場合においても、プロセス全般に渡って一挙に

すべての問題解決を行う事は極めてまれである。プロセスの規模が大きくなればなるほど、完成まで

に多くの情報が必要となり決定すべき事項も飛躍的に増大する。しかも与えられる情報の質もまちま

ちであり、決定の程度の詳しさや質もどの段階での答えを求められているかによって大きく違ってくる。

従って、情報や決定の質がある程度そろえられる範囲で対象を区切るのが一般には実際的であり、

また効果的でもある。このためプロセスエンジニヤリングでは通常、「計画(planning)」、「設計(design)」、

「運転(operation)」、「管理・保全(management)」と呼ばれる段階をもうけ、各段階毎に問題解決を計

ろうとするのが普通である。 

 このうちプロセスの計画は最も初期の段階で、例えば Table 1.1の要因・条件欄に示されるような、

単に工学的要因にとどまらず社会的・経済的要因とも関わる各項を勘案しながら, 決定項目欄に示

すような各項に関する意思決定を行うものである。ここでの決定事項は以降のプロセス開発上の条

件の基本的枠組を与え、とりわけ次段階でプロセス設計においては直接的な規定条件とされる事が

多い。この段階での(決定に関する)作業を進めやすくするためには、Table 1.2に示すように、さらに

段階を細分化し、より段階的な決定ができるように行っていくのが便利である。 

 この計画段階での意思決定の成否はプロジェクト全体の成否を決めてしまいかねないという重要

性をもっているといえる。しかし対象システムや評価基準の数式によるモデル化が行い易いプロセス

の設計や制御に関する決定問題と較べて、数式によるモデル化が困難な場合も少なくなく、数式モ

デルに依存するような手法は一般に採り難い。このため前者では、数理的最適化手法を如何に効果

的に適用するかが意思決定手順の一つの基本的アプローチとなるのに対して、特に計画の初期の

段階での問題のようにシステムの境界上で不確定な外的条件との係わりを抜きにして論じられないよ

うな場合には、問題自身の把握に大きな関心が寄せられる。従って純粋に数理的な最適化手法より、
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問題構造を明らかにした上で、意思決定を支援するための論理的・手順的な手法(例えば、ブレーン

ストーミング、デルファイ法、KJ 法、NM 法等の発想法)の適用が有用といえる。また数理的手法も数

学的に悪構造(ill-defined)な場合を含めて考察できるようなものが有効と考えられる。 

 

Table 1.1   What to decide under what condition 

決定事項 要因・条件 

原料 環境 

立地 安全性 

製品(品質、量 etc.) 需要構造 

用役、要員 社会トレンド 

タイミング 競合条件 

資金 企業戦略 

ブロックフローシート 法規 

物流 技術トレンド 

技術検証 価格情報 

 

Table 1.2   Sub-phase of planning stage 

決定項目/段階 マクロ計画 事業化計画 基本計画 

原料        種類 純度、組成 価格 

立地 国別 工場見取り図 Plot plan、気象条件 

製品 生産量 品質、品種 輸送形態、稼働率 

用役、要員   － 用役種類 用役仕様、価格、要員数 

タイミング  ターゲット ライフサイクル 工事計画 

資金   枠ぎめ 経済評価 
最大投資額、 

計装、設備費概要 

ﾌﾞﾛｯｸ･ﾌﾛｰｼｰﾄ  ﾌﾟﾛｾｽ候補選択 
Basic flow、触媒、 

溶剤、設備能力 

Block flow diagram,  

Mat.& Heat balance 

物流   － 販売計画 入出荷設備、販売ﾙｰﾄ 

技術検証 技術予測、特許権  ﾗｲｾﾝｽ、ｱｾｽﾒﾝﾄ 安全確認  

 

2. 価値システムの設計法 

 

  これまでに述べたように意思決定に先だって、合理的な決定を行なうためには、どのような目的、

換言すれば、意思決定主体の持つ価値の構造を明確にする事(価値システムの設計、Value system 
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design)が重要となる。この際、価値観を構成する各々の属性を一つの要素とみなし、要素間の関連

を明示化することと捉えれば、構造モデリンング手法を適用することによって価値システムの構造化

が可能となる。また(工学)システムにおける価値構造の基本が木構造(Tree structure)となる点に着

目すれば、より応用性に富んだ別のアプローチの適用も可能となる。以下ではこれらの代表的手法

の紹介を行う。 

 

2．1 ISM 法 

 

  ISM 法(Interpretive Structure Modeling Method)は

Warfield によって開発された構造モデリング手法の一つ

である。ISMはシステムを構成する要素間の相互関係の

個人またはグル―プとしての認識パタ―ンを明らかにす

ることを通じて、複雑な問題を分析し、システム合成に

役立てようとするものである。このためコンピュ―タを媒

介として、グラフ理論に基づく系統的処理により、結果を

多階層の有向グラフとして解析結果を視覚的に表現さ

れる。その論理的取り扱いの概要は以下のようである。 

 システム要素の集合 S={s1, s2,…, sn}上で二項関係 R
を定義し、要素 siが要素 sjに直接的に関係している場合、これを 

 

 siRsj   (2.1) 

 

と表すことにする。集合 S 上での二項関係は、S の要素 siをグラフの頂点で表し、siRsjのとき、頂点 si

から頂点 sjへ向かう矢印を描くことにより、有向グラフとして表すことができる。二項関係を有向グラフ

で表現した一例をFig.2.1に示す。そこでは例えば s1は(直接的に)、s5と関係し、また、s3と s4は相互に

関係し合っていることも表わされている。 

 ISMでの実際の作業は、全ての要素間で関係Rが成立するか、しないかを調べ、その結果を2値行

列を用いて表わす事から始められる。そしてここでの手順は以下のように要約される。 

(1) もし第 i要素が第 j要素に直接関係している時には、行列の第 i-j要素に1を、そうでない時には、

0を記入した随伴行列(Adjacency matrix) Aを作製する。例えばFig.2.1の有向グラフに等価な随

伴行列は 

 

 

 

Fig.2.1 Digraph  
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と書ける。 

 

(2) 随伴行列に単位行列Iを加え、(A+I)n-1≠(A+I)n＝(A+I)n+1が得られるまでブ―ル演算1

  先の例では、Eq.(2.3)のようになる。ここで網がけされた｛1｝はもとの(A+I)行列にはなかった要素で

間接的に関係する事を示す。例えば、t45＝1は要素 s4と要素 s5との間には直接的な関係はないが、

Fig.2.1からも知れるように、要素 s3を通して(間接的に)関係していることを表している。つまり、可到達 

行列 T の(i, j)要素 tijが1であれば、有向グラフ上で頂点 siから頂点 sjへたどって行けることを、tij が0

なら頂点 siから頂点 sjへ到達できないことを表している。なお、n はこの時の最長の経路数を表わし

ている。従って、行列 T には行列 A に表現された直接的関係とともに、関係 R の推移性を仮定した

時の間接的関係も同時に示されていることになる。 

を繰り返し、

可到達行列(Reachability matrix) T を求める。 

 

         T=(A+I)2 =
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(3) グラフの階層関係を調べるため、同一レベルに属する要素毎に分類する作業(レベル分割)を開

始する。(k=1 とする。) 

 

(4) 要素 siについて次の2つの集合 

   Rk(si)={sj∈S|tij=1}  ; 要素 siから到達可能(reachable)な要素の集合 

                                                           
1 (和)1+1=1, 1+0=1, 0+1=1, 0+0=0, (積) 1･1=1, 1･0=0, 0･0=0 
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   Ak(si)={sj∈S|tji=1}  ; 要素 siに先行する(antecedent)要素の集合 

を定義し、各要素毎に Rk(si)と Ak(si)を求める。 

 

(5) Rk(si)∩ Ak(si)=Rk(si) を満足する集合 Lk を求める。この関係は到達可能な要素は自分自身しか

ないことを表わしており、この集合内の要素は、まだレベル分割されていないものの中で有向グラフ

の最上レベルに位置することになる。Eq.(2.3)で与えられる可到達行列をもとにこの計算を行うと、下

表のようになり、s5が最上位となることがわかる。 

 

      

       

Table 2.1  Identifying process of the first level lements      

要素si  Ri      Ai        Ri∩Ai     Ri∩Ai=Ri      

         1   1,5        1,2,6         1   

     

         2   1,2,3,4,5    2,6          2 

         3   3,4,5       2,3,4,6       3,4 

         4   3,4,5       2,3,4,6       3,4 

         5   5          1,2,3,4,5,6    5        Y 

       

 

  6    1,2,3,4,5,6  6           6                    

(6) Lkの各要素に対応する行、列を行列Tから除き、空でなければ k=k+1とし、ステップ(4)に戻る。空

の時には、レベル分割が終了したことになるので次へ進む。先の例では、第2レベルの要素は、

L2={s1, s3, s4}、第3レベルの要素は、L3={s2}、第4レベルの要素は、L4={s６}と順次決められる。 

 

(7) 同一レベル内での位置関係を調べるため、Lk毎にレベル内分割を行う。もし RLk(si)=siであれば、

siはレベル内の他の要素とは離散しており、RLk(si)≠siの時は強連結の関係にあることがわかる。今の

場合には、RL2(1)={1}, RL2(3)={3, 4}, RL2(4)={3, 4}であるから、s1は離散し、s3と s4が強連結である。 

 

(8) 強連結集合に分類された要素中で、同一ブロックに属

するもの同士に分割する。このために、「同一ブロックに属

する要素は、全ての要素に到達可能であり、かつ先行し

なければならない」という性質を利用する。第2レベルで s3

と s4は同一ブロックに属する強連結要素であり、 

RL2(3)∩RL2(4)={3, 4}, AL2(3)∩AL2(4)={3, 4}であることが確

かめられる。  

s1

s5

s3

s2

s6第4レベル

第3レベル

第2レベル

第1レベル

s4

Fig.2.2 ISM structural graph 

 



 
8 

(9) 以上の結果を図示し、要素間の相対的位置関係を視覚的に表す。本例での結果を Fig.2.2に示

す。なお、この際、複雑な問題においては視覚情報としての有効性を向上させるため、重複した煩雑

な表現をできるだけ省き、最小必要限の表現(スケルトン表現)が採用されることが多い。 

  以上は、ISM セッションと呼ばれる一連のプロセス中でのもっぱらコンピュータにより機械的に作業

が可能な一段階を示しただけにすぎない。実際には要素の

選択や結果に対する分析や議論等が繰り返し行われる必要

があり、セッションが成功するためには熟練したコ-ディネータ

による進行が不可欠であるといわれている。  

 

(問2.1) Fig.2.3に示す有向グラフを ISM 構造グラフで表せ。 

 

2．2 価値評価法 

 

 社会システムと較べて比較的明確な問題定義が行なわれる工学システムでは、価値構造が単純な

ツリー構造となる場合が少なくない。価値評価法(Worth Assessment Method、 Miller, Farris & 

Sage)は、こうした場合に適用の容易な一つの手法である。その実行手順を自家用車を購入しようと

する際の車種の選択問題を取り上げて示す。 

  この例では「最良の車種を選ぶということ」が検討課題である。また対象候補となる車種(代替案)は

M 種とする。この時、漠然と好ましさを比較するより以下のような系統的な手順を採ったほうが、総合

的により正しい判断ができるものと期待される。 

 

(1) まず、総括的目標(最良の車種を選ぶ)を最上位レベルの目標として設定する。 

(2) 一つ上位レベルの目標を、より具体的に表現する下位レベルの目標に分割する。こうした分割を

順次行い、最上位目標が現実的に評価可能な下位目標によってのみ表現されるようにする。結果は、

ツリー構造を持つ目的木として表される。例での選定は、まず費用と、見た目と安全性の観点に着目

し、さらに費用は、購入時の出費と維持に必要な費用で評価し、維持費用は定期点検時の費用と修

理時の費用を考えるといった手順でここでの評価木が Fig.2.4に示すように作成される。ここでの最下

位目標の総数を N とする。 

(3) 分枝毎の最下位目標の各々に評価の基準を決め、これに基づき各代替案の満足度を得点 si(j)
として、例えば［0, 1］のように一定範囲内で与える。ここで si(j)は代替案 j の目標 i に関する得点を表

す。(j=1,…, M, i=1,…, N) 

(4) 同一レベルに属し、かつ分枝元を同じくする各目標に対して、分枝元の目標の達成にとっての

相対的重用度を表す重み係数を和が1となるよう配分する。これを分枝毎に全レベルに渡って行う。

例えば、費用、見た目、安全性は同一レベルにあり、最終目標を共通の分枝元としており、これら間

 

s1

s5

s3

s2

s6

s4

s7

Fig.2.3   Digraph 
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の相対的重要度が重み係数としてそれぞれ0.5, 0.3, 0.2と与えられている。以下同様にする。 

(5) 最下位目標毎に分枝を上位へ遡っていき、各レベルで配分された重み係数を順次掛け合わせ

る事によって、実効重み係数(Effective weight)μiを計算する。例えば、定期的な保守の実効重み係

数は0.25×0.4×0.5=0.05と計算される。 

(６) 最下位目標毎に、最終目標の評価に関する重要性に対して上述までの判断の確信度

(Adjusting factor)αi (0＜αi≦1)を反映させる事によって実効重み係数を 

∑
=

=
N

i
iiiii

1
/ αµαµε 　 のように修正する。 

(７) 修正実効重み係数(Adjusted weight)を用いて、各代替案、(j=1,…, M)の総合評価点を計算し、

最高得点のものを選択する。 i.e.  ∑
==

N

i
iiMj

jsMax
11

)(ε　　


 

 

2．3 階層分析法、AHP 

 

 §2.2の価値評価方法の構成原理は判りやすく、有限個の代替案に対する多目的評価を簡単に

行うことができる。しかしレベル毎の重み係数を意思決定者に直接的に判断することを求めることは、

必ずしも現実的でない。1977年に Saaty によって開発された階層分析法、AHP(Analytic Hierarchy 

Process)は、こうした直接的評価の代りに、相対的な評価(一対比較)を通じてできるだけ系統的かつ

整合的に行おうとする手法である。この方法の基本的理論は平明であるため、以後種々の分野での

Fig.2.4  価値評価法の自動車選択問題への適用例 
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問題解決に応用されてきている。工学システムと社会・環境システムとの接点は将来に向かって増大

傾向にあり、その適用範囲も今後ますます広がっていくものと予想される。 

 

2．3．1 基礎理論  

 

 この方法の基本的な適用における第一段階は、先の方法と同様に、問題解決上の要素を、最終

目標→評価基準→代替案という様に展開し、3段階に分けて分類、階層化することである。この際、

各レベルの要素数は、後での要素間の比較を困難なものにしないようせいぜい７±2個程度2

 さて最終目標を最上位レベルとする階層図が、Fig.2.5のように決められたものとする。ここで

Fig.2.4と違うのは最下位階層に代替案の候補も併せて書き入れてある点である。各レベル毎の要素

を x1, x2,…, xnで表すとして、以下どのようにして最良の代替案が選ばれるかみてみる事にする。 

にとど

めておき、これで十分に評価基準を表せない場合には、むしろ階層化を通じてさらに細かく分類した

方がよい。従って評価基準を表現するレベルは一般には2層、3層にもなる。また、同じレベルの中の

要素は相互に独立となるものを選ぶようにする。そうしないと、類似の要素が重複して考慮されること

になり、その他の要素の重要度が割り引かれることになる。 

 まず意思決定者の主観的判断に従って、任意の二要素(xi, xj)間の相互の重要性の程度を比較し

て、数値の大小によって表現してもらう。即ち両者が同じ程度に重要な時には、aij=1とし、xiが xjに較

べて重要性が高ければその程度に応じて大

きな値(aij＞1)を、反対の場合には小さな値

(aij＜1)を、答えてもらう。ここで明らかに aii=1
であり、さらに理想的には、aji=1/aijであると

する。こうした(一対)比較を要素の全ての組

合せ（総数は n(n-1)/2となる)について行なう

ことで、Fig.2.6(a)に示すような一対比較行列

が得られる。実際には応答における負担を

軽くするため、上のように数値で答えてもらう

代りに、Table 2.2の左欄に示すような言語で

応答してもらいこれを改めて右欄の数値に換

算するのが一般的である。 

 このように主観的に得られた数値は、一般に基数としての意味をもたない。しかし与えられた値が、

要素間の相対的重要度を表わす重みベクトル、wＴ=(w1, w2,…, wn)の任意の要素間の比を正しく反映

している(以後、前提[1]と呼ぶ。) とすれば、aij=wi/wjであり、Fig.2.6(b)で表されるような重み係数行

列を表現し直したものと見なすことができる。 

  そこで Fig.2.6(b)を A と等値し、この両辺に右から w をかけてみると、 
                                                           
2 認知学において、人間の短期記憶量に関連する1チャンク量として知られている。 

 

レベル 1(最終目標)

レベル 2(評価基準)

レベル L(代替案)

レベル L-1(評価基準)

x1(1)

x1(2) x2(2)

x1(L-1) xn(L-1)x2(L-1)

x1(L) x2(L) xm(L)

xn-1(L-1)･･･

･･･

･･･ ･･･････････････

Fig.2.5 階層図 
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 Aw = nw      (2.4) 

となる。これを次式のように整理する。（I は単位行列） 

 

 (A-nI)w = 0      (2.5) 

 

ここで n をλに置き換えてみれば、Eq.(2.5)は A の固有値を求める式にほかならず、λと w はそれぞ

れ A の固有値と固有ベクトルに相当することがわかる。       

           

        x1    x2  ... xn            x1   x2  ...  

  x1   1    a12  ... a1n      x1   1  w1/w2   ... w1/wn 

xn     

A  =  x2  1/a12    1  ... a2n ＝      x2  w2/w1   1  ... w2/wn 

  ．   ．．．．．．．．．                ．    ．．．．．．．．．． 

  xn  1/a1n   1/a2n ... 1         xn  wn/w1 wn/w2  ...  1  

 

   Fig.2.6(a) 一対比較行列        Fig.2.6(b)重み係数行列 

 

Table 2.2 一対比較値     

(要素 j と比べて要素 i は) aij 

同じように重要 1 

やや重要 3 

かなり重要 5 

非常に重要 7 

極めて重要 9 

上記の中間程度 2, 4, 6, 8 

 

さらに前提[1]のもとでは、A の第2行目以降は第1行目の値の定数倍となるので、A の階数は1とな
り唯一の非零の固有値をもち 

 

 Σiλ i= λmax = Tr(A) = n    (2.6) 
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となる。 

  ところで前提[1]が必ずしも成立しない一般の場合にも同様の関係が近似的に成立すると考えれ

ば、その最大固有値に対応する固有ベクトル求め、これを w とみなすことにする。相対的重要度を表

わす重み係数としては、Σiwi=1となるように規格化して用いるのが通常である。 

 以上のようにすれば各階層毎の要素の重要度を順次決定していく事ができる。そして代替案を直

接的に評価する事になる最下層レベルの要素の重み(総合重み)は、すでに価値評価法で行ったよ

うに親子関係にある(分枝元を同じとする)要素間で重み係数を階層の上から下に向かって順次求め

て行けば良い。(このようにして計算された総合重み係数 wi(L-1)は、後述する多目的最適化問題に

おける評価関数の加法的統合化のために直接的に利用できる。) 

  価値評価法では、最下層の評価基準の下で各代替案を直接に評価し得点化するのに対して、

AHP ではさらに最下層の各要素からみた各代替案の好ましさをこれまでと同様に一対比較に基づ

いて評価して重みを求める。（L-1レベルの i 評価における j 代替の重みを wij(L)とする）そしてこれと

総合重み wi(L-1)との荷重和を計算し、これを最大とするものを最良の選択として選び出すところまで

手順が展開される。（i.e.  ∑ ⋅− )()1( LwLwMax ijiij
　 ） 

 なお一対比較行列の任意の要素間で、｢i より j が好ましく、j より k が好ましい」ならば「i より k の方

が好ましい」という一対比較における首尾一貫性を示す関係、即ち、 

 

 aijajk = aik, ∀i, j ,k     (2.7) 

 

が成立するとき、A は(基数的)整合性をもつと呼ぶ事にする。そして A が整合的である時には、式

(2.6)よりλmax =n であり、一般にはλmax＞n となるので、常に整合的であるとはいえない主観的判断

の整合性のずれを 

 

 CI = (λmax -n)/(n-1)     (2.8) 

 

で定義される整合度(consistency index)を用いて判定する。(λmaxを除いた残りの固有値の平均とい

える。) 完全に整合性があるときには CI=0であり、整合性がないほど大きな値となる。 

 また別の整合性の指標として整合比、CR（consistency ratio）が知られている。A の要素は1/9, 1/8,
…, 1, 2 ,…, 9のいずれかであるので、（ただし、ここで対角要素は1、対称要素間の逆数関係という条

件は成立するように規定しておくものとする。）これらの値をランダムに発生させた一対比較行列を作

りこの CI を求める。こうした計算を多数回行い、その平均値をランダム整合度、R (Table 2.3)と呼ぶ。

RとCIの比、CR=CI/Rは、所与の応答の整合性と一対比較における整合性を全く無視した応答の整
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合性の比の値と解釈される。CI、CR とも0.1以下となることが一般的な判定基準とされており、満たさ

れない場合には一対比較の判断の再考を検討する必要があるといわれている。 

 

Table 2.3 ランダム整合度、R  

要素数 1 2 3 4 5 6 7 7 8 9 

R 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

 以上の手順をまとめれば以下のようになる。 

(1) 問題解決上の要因を分析して、その結果を階層図として表現する。(Hierarchy) 

(2) 各レベルのすぐ上位のレベルに属する要素から見たときの重要性を一対比較行列として表す。

これを階層図の上から下へ順に行う。 

(3) 各一対比較行列から要素間の重みと整合度 CI と整合比 CR を計算する。これらが基準値を越え

るようであれば(2)での比較判断を再検討する。 

(4) 階層図にそって重みを合成し、最終目標から見たときの各代替案の総合重みを計算する。

(Analytic) 

(5) 最終結果を全プロセスに沿って総合的に検討し、不整合な部分があればそれ以後の手順を再

度実行する。(Process) 

 AHP の大きな特徴の一つは、主観的な重要度の決定という定量的に取り扱い難い問題解決を系

統的手順として与え、一対比較行列 A の固有ベクトルの計算という単純な演算に置き換えることがで

きる点にある。しかし上記のまとめからも知れるように重みの導出自体は全体の手順の一部にすぎず、

通り一遍の適用からは成功しない点は ISM と同様である。 

 

(例2.2) 1986年の事故の後のスペースシャトルの開発計画に関する意思決定問題を取り上げてみる。

まず、事故後にアメリカ政府が取るべき策として、 

 ①しばらく保留して調査する。(保留) 

 ②全体計画を中止する。(中止) 

 ③このまま継続する。(継続) 

 ④このプロジェクトを他の国に任せる。

(外国) 

の4つの代替案が提案されたとする。(以後、(  )内に

略記したもので表す。) 

 またそれらを選択する基準として以下の五つがあが
Fig.2.7  評価の階層図 

 
 

レベル 1(最終目標)

レベル 2(評価基準)

レベル 3(代替案) 外国へ

ペースシャトルの今後

技術

中止継続保留

経済軍事安全メンツ
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ったとする。 

 ①国のメンツを守る。(メンツ) 

 ②安全の優先。(安全) 

 ③軍事優先。(軍事) 

 ④経済の発展を計る。(経済) 

 ⑤科学技術の発展。(技術) 

 結局、ここでの階層図は、Fig.2.7のようになるので、まずレベル1の目標のためにはレベル2の五つ

の評価基準,(メンツ 安全 軍事 経済 技術)のそれぞれをどの程度重視したらよいのかを示す重

みを求めたところ、 

 

 (0.343  0.331  0.207  0.080  0.038)    (2.9) 

 

であったとする。つぎに、レベル2の各基準からみた四つの代替案、(保留 継続 中止 外国)のどれ

が望ましいかを表す重みを求める。このうちたとえば、国のメンツを保つという基準からみた四つの代

替案の望ましさを表す重みは、 

 

 (0.550  0.232  0.135  0.083)    (2.10) 

 

のようであった。同様に、そのほか四つの基準からみた重みも次表のように求められたとしよう。 

 

 メンツ 安全 軍事 経済 技術 

保留 0.550 0.260 0.313 0.409 0.553 

継続 0.232 0.125 0.519 0.391 0.213 

中止 0.135 0.547 0.109 0.063 0.074 

外国 0.083 0.068 0.059 0.137 0.160 

 

 最終目標からみた代替案の重み(総合重み)は、表の行列の各列の値を(2.9)式の評価基準の重み

で重み付けをして、横に取った和で与えられる。すなわち、 

 

 (0.394  0.268  0.258  0.0800)       (2.11) 

となる。これに従うと、保留の重要度が0.394と一番大きく、「プロジェクトの進行を一時保留すべし」が
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選択される。 

 

2．3．2 拡張理論－不完全情報と不整合性の克服 

 

(1) 不完全情報の克服 - Harker 法 

 基礎理論で述べた手順に従えば、問題規模が大きくなるのに伴って必要となる一対比較の回数は

飛躍的に増える。このため実際の応用においては、全ての比較を行うのが面倒で幾つかをパスした

り、どうしても態度を決め難いような場合がしばしば生じる。この結果として作成される一対比較行列

は部分的に幾つかの要素の抜けた不完全なものとなる。このような不完全な場合に対する適用法の

一つとして知られている Harker 法を簡単な例を用いて以下に紹介する。 

 今、(2.12)式のように部分的に未定の要素(□で示した。)を含む不完全行列 A に対して、推定した

い重みを w = (w1, w2 , w3, w4)T とする。基礎理論より対称要素はそれぞれの逆数とし、未定要素を

aij=wi/wjで埋めるとすれば、形式的に固有値問題は(2.13)式のように書ける。 

 

 A 


















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11

□□

□

□
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    (2.12) 
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
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w
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　　 λ     (2.13)    

 

これより以下の関係が成り立つ。 

 

 3w1 +        w3       = λw1 

       2 w2  +  5w3 + 3w4  = λw2 

  w1 + 1/5w2  +  2w3       =  λw3   (2.14) 

      1/3w2  +       3w4   = λw4 

 

これを整理し直し、行列表現すれば以下のようになる。 
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　　 λ     (2.15) 

  

 上の結果を良く観察すれば、得られる行列は元の不完全行列において、未定要素を0に、対角要

素をその行にある未定の要素の個数に1を加えたものに置き換えたものに等しいことがわかる。そし

てこの固有値問題を先と同様の手順で解くことで今の場合、wの推定値が、w’ = (0.115, 0.577, 0.115, 
0.192)Tのように計算される。(なおλmax = 4.0となる。) 

 Harker 法は、全ての一対比較に整合性が成立するような完全整合行列（{aij} = {wi/wj}, ∀ij）にお

いては、そのうちの一部分の一対比較からでも同じ重みを求めることができるという事実に基づいて

いる。 

 

(2) 不整合性の克服 

 先に一対比較の整合性の判定規準として整合度の指標、(2.8)式を示した。そして経験的にこの値

が0.1以上のときには比較が不整合であるとしてやり直す必要があると述べた。しかし不整合である事

がわかった時に整合性を回復するための方法については何も示さなかった。以下ではこの問題につ

いて検討してみることにする。 

 最も簡単な方法は Saaty 自身が示している方法で、計算された重みをもとにして、wi/wjを(i, j)成分

とする完全整合な行列を作り、元の行列と各要素を比較してみて、違いの大きいものに着目してその

部分の、 

(1) 一対比較をやり直す 

(2) wi/wj:=aijによるおき替えをするというものである。例えば、 

A  = 　



















17/18/17/1
713/16/1
8314/1
7641

        (2.16) 

  

に対して、(w1, w2, w3, w4) = (0.587, 0.245, 0.130, 0.038)；CI=0.151、と計算され、整合性の規準は満

たされていない。そこで上で計算された重みを用いて完全整合な行列 A*を作成すれば以下のように

なる。 
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A＊ =  　



















1
42.31
45.688.11
45.1551.440.21

           (2.17) 

  

ここで(2.16)式と(2.17)式を比較して、特に違いの大きい下線部の要素に着目して、 

(1) 一対比較をやり直して a14=8、a34=4とする、 

(2) a14=9 (15.45＞最大値)、a34=3 (3.42を四捨五入) におき替える、 

ことにより再評価したときの結果は、それぞれ 

(1) (w1, w2, w3, w4) = (0.605, 0.247, 0.107, 0.041)；CI=0.080 

(2) (w1, w2, w3, w4) = (0.615, 0.246, 0.098, 0.042)；CI=0.05 

と計算され、どちらの場合も整合性の改善がなされた事が知れる。 

 また別の考え方として Cook と Kress の方法がある。まず二組の一対比較行列 P={pij}と Q={qij}間
の距離を 

 

 ∑∑
==

=
11

|]/[|2/1),(
j

ijij
i

qpLnQPd 　        (2.18) 

 

で定義する。そして不整合な行列、A={aij}を整合な行列に近付ける一つの方法として、完全整合行

列、A＊={wi/wj}との距離を最小にするような問題 (p.1) を定式化している。 

 

 (p.2.1)  Minimize ∑∑
== 11

|)]//([|
j

jiij
i

wwaLn  

                 subject to  0,1
1

>=∏
=

ii
i

ww　  

 

ここで、 1
1

=∏
=

i
i

w は規準化のための一つの便宜的な条件である。(p.2.1) は、Ln(wi)=xi=xi
＋－xi

－と変

数変換した上で偏差変数、Pijと Nijの導入によって(p.2.2)のようなゴール計画問題に帰着される。 

 

    (p.2.2)  Minimize ∑∑
==

+
11

)(
j

ijij
i

NP     
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  subject to  










=

=−
=+++−−

−+
=

−+

−+−+

∑
　　　　≧

　　　　　　　　　　

njiNPxx

xx
aLnPNxxxx

ijijii

i
ii

ijijijjjii

,,1,,0,,,

0)(
),(

1



 

    

 (p.2.2)は線形計画法によって求解可能であり、最終的に重み係数は以下のように計算される。 

 

 ∑
=

−+ −==
1

])exp[(,/'
j

iiijii xxwwww 　       (2.19) 

 

［演習2.1］AHPをグループにおいて適用する時、一対比較値として(1)算術平均、(2)幾何平均のどち

らを用いた方が適当か、一対比較行列の作り方に基づいて考察せよ。 

 

まとめ：価値システムの設計は意思決定者の価値観の構造を明確化することであり、ISMやAHPなど

の手法の適用が有効である。 

 

3． 多目的最適化手法概論 

 

 これまでに示した手順に従って、価値システムの設計が一応でき、価値評価法や AHP を用いれば

複数の代替案の中から、最も好ましいものを選ぶこともできる。以下では、先に問題解決手順を段階

化した時、次段階にあたる意思決定に焦点をあて、より一般的な手法について述べる。ここでは、決

められた価値の構造に従って最良の代替案の選択や方策の決定を行うことになる。こうした問題解

決において問題の記述が数式モデルによって表現可能な時、評価基準が唯一であれば通常の最

適化問題から答えが得られる。一方複数の評価の下での考察は多目的最適化問題、(p.3.1)として

定式化される。 

 

   (p.3.1)  Min  f(x)={f1(x), f2(x),…, fN(x)} subj. to x∈X 

 

ここで、f1(x), f2(x),…, fN(x)は N 個の目的関数であり、例えば評価木の最下層の要素が相当する。ま

た、x は決定変数を表わし、それらの存在範囲には制限がある(x∈X)とする。もしこれら全てを同時

に最適にするような x∈X が存在するとすれば、問題として有意とならないので、目的間には一方を

良くしようとすれば、どれか他のものが悪くなるような組が必ず含まれるものとする。従って最適化の

過程において意思決定者(Decision Maker, DM)の選好を反映させて達成に関して目的間の調整を

計ることを通じた解法が必要となる。工学システムにおける問題解決においてこうした定式化が必要
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となる背景には近年のシステムをとりまく環境の変化に伴う価値基準の多様化や設計仕様の厳格化

に加えて以下のような事情が考えられる。 

  工学システムの計画や設計(概要決定と呼ぶことにする)時に与えられる条件や設計の基礎となる

システムモデルには必然的に不確定な要因が種々含まれており、この段階で不確定性に対する補

償についても充分に検討しておく必要がある。さもないと概要決定に従ってハードウェアができ上が

ってしまってからでは、最適化どころか制御や操作(詳細決定と呼ぶことにする)をどのように変えてみ

ても必要な性能を維持できなくなるような事態にならないとも限らないからである。従来のこうした点

への対応は概要決定段階での検討結果を詳細決定の際に受け渡たし、完成されたシステムでの運

用の経験を次回からの概要決定にフィードバックすることを通じて蓄積されてきたノウハウやヒューリ

スティックスを拠り所として行われてきたといえる。 

 しかし近年、概要決定段階での考察対象を従来の範囲だけに固定して考えずに問題解決を行っ

た方が、より合理的となる場合が少なくない事がわかってきた。この時、概要決定上の評価自体も経

済性だけとするより、（確率論/決定論的）リスクや安全性に関わる信頼性(reliability)や柔軟性

(flexibility)の面から、或いは操作性(operability)の面から設計性能を評価する事の重要性が認識さ

れるようになってきている。さらに環境汚染物質に関しても単に法的規制を満足するだけにとどまら

ず、できるだけ環境にださない努力が要求されるようになってきている。この時、経済性と安全性だけ

をとってみても、一般に共通の評価尺度を持たないうえに明かに競合関係がみられ、両方を同時に

最適にする事は不可能である。このように評価の側面が多様になれば、ほぼ必然的に評価間での競

合がおこるため、それら間の調整を計って全体として最も望ましい結果に導く努力が必要となるとい

える。 

 

3．1 パレート最適性と選好最適化 

 まず多目的最適化問題においてよく用いる二～三の用語の簡単な説明をしておく。 

(定義．1) 選好関係：決定変数の集合 X の任意の二要素 x, y(∈X)間における DM の選好を表す二

項関係を選好関係と呼び、xPy のように表す。 

 ところで多目的最適化問題においては、n=dim x＞N=dim f(x)であるような場合が多いため、また、

評価基準を通じた判断の方が容易なため決定変数空間でより目的関数による評価を通じた目的空

間 ZNでの比較の方が一般的である。このときの選好関係は以下の三つに分類される。 

 1. (ZN,  )：強選好関係(要素間で順序)3

 2. (ZN, ～)：無差別関係(要素間で選好上の差がない) 

 

 3. (ZN,  )：選好関係((ZN,  )と(ZN, ～)の和集合) 
                                                           
3 順序には以下の三つの性質がa, b, c間に成立する。 

反対称性 : aPb かつbPa → a=b , aPb → not bPa 
推移性 : aPb かつ bPc → aPc 
反射性 : aPa が存在 
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(定義．2) ∃x＊∈X に対して、f(x＊)＞ f(x)となるような x∈X が存在しない時、x＊はパレート最適であ

るといい、それらの解集合をパレート解集合、或いは非劣解集合と呼ぶ。ここで記号＞は、f(x)の全

ての要素について≧であってかつ、少なくともどれか一つについては厳密な不等号関係が(＞)成立

する事を表す。 

 またパレート解集合の目的空間への写像およびこの接平面の傾きをそれぞれトレードオフ曲面、ト

レードオフ比と呼ぶ。 

(定義．3) ∃ x＊∈X に対して、f( x＊)＞f(x)となるような x∈X が存在しない時、x＊は弱パレート最適

であるといい、それらの解集合を弱パレート解集合等と呼ぶ。 

(定義．4) ∀ x∈X に対して、f(x＊)≦f(x), x＊∈X が成立する時、x＊を完全最適解と呼ぶ。 

 これらの例を Fig.3.1に示す。 

 さて既に述べたように問題の成立上、完全最適解は存在しない事を前提としている。この時、多目

的最適化問題の解は、ある目的関数の値を良くしようとすればどれか他の関数値は悪くしなければ

ならないようなギリギリの点の集合であるパレート最適解集合の中から選ぶのが妥当と考えられる。し

かしパレート最適解同士は、それ自体で順序付け不可能なため、DM の選好構造を反映するなんら

かの決定規範に基づいて選好上の最良解を求める必要がある。換言すれば、多目的最適化は個々

の目的に関する最適化ではなく、

競合する目的間のトレードオフを

考慮して妥協解を求める決定問

題といえる。このようにして求めら

れる解は選好上の最適解という意

味で選好最適解(Preferentially 
optimal solution)或は最良妥協解

(Best compromise solution)と呼ば

れる。 

 

3．2 パレート最適解集合の求め方 

  

パレート最適解を求める方法としては、ε-制約法と重み付け法が良く用いられる。(p.3.1)に対し

て、これらはそれぞれ(p.3.2)及び(p.3.3)のように与えられる。 

(1) ε-制約法 

 (p.3.2) Min fｐ(x)   subj. to  




≠=+
==∈

∗ ),,,1(,)(
},,1,0)(|{

pKNkff
migX

kkk

i





　≦

　≦

εx
xxx

 

 

Fig.3.1 最小化問題での例 
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ここで、fｐ(x)は主眼とする目的関数で、fk＊及びεk (＞0)はそれぞれ目的毎の理想(最適)値とそれか

らの劣化(ε-制約)量を表す。 

 

(2) 重み付け法 

  (p.3.3)     ∑
=

N

k
kk fwMin

1
)(x　　   subj. to 







=

==∈

∑
=

N

k
kk

i

ww

migX

1
)0(1

},,,1,0)(|{

　　　　　　　≧　　

　≦ xxx
 

     

ここで、wk は、目的間の相対的重要度を与える重み係数である。 

 いずれの場合も、前者では割引量 εk を、後者では重み係数 wk を色々変えて求解することによって、

目的空間での非劣解集合を求めることができる。特に評価関数の数が高々3個までの場合には、こ

の結果を利用すれば目的間の競合関

係を視覚的に捉えることができ、トレード

オフ解析を行う上で非常に有用である。

工学システムに応用する場合には、適

用上の数学的条件の弱い前者が用いら

れる場合が多い。これは Fig.3.2に示す

ように解集合が凸集合でない場合

(Fig.3.2(b))には、後者の方法では曲線

ab に対応する部分のパレート最適解は

求められないのに対して、前者の方法で

は対応できるためである。 

 

(問3.1) (p.3.2)の唯一の最適解を x＊とするとき、f (x＊)はパレート最適解であることを証明せよ。 

 

(問3.2) 非劣曲面が非凸の場合にも、次に示す最大成分最小化問題において重みを変化させて求

解することで弱パレート最適解集合が求められることを示せ。 

 

      ∑
=

=∈
N

k
kkkkkx

wwXtosujbfwMaxMin
1

)0(1,.)( ≧　　　　　　　　　 xx  

 

なお、(問3.2)の評価関数に )(
1

xk

N

k
k fw∑

=

ε を付加することによって、パレート最適解を便宜的に求める

ことができる。ここでεは正の小数である。 

 

Fig.3.2  重み付け法の適用限界 
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3．3 選好最適性の必要条件 

 

 先の議論から(p.3.2)の最適解はパレート最適解の一つを与えることがわかった。この問題自体は

通常の不等号制約条件付きの最適化問題であるので、良く知られているようにその最適性の必要条

件は、関数の滑らかさに関する適当な仮定の下で Kuhn-Tucker の定理から導かれる。即ち、ラグラ

ンジュ関数を 

 

∑ ∑
≠= =

∗ +−−+=
N

pJj

m

j
jjjjjjp gfffL

,1 1
))(()()( λεη xxλη,x, 　    (3.1) 

 

で定義するとき、(P.3.2)の最適解が満すべき必要条件は 

 

    ∑ ∑
≠= =

=∂∂+∂∂+∂∂=∂∂
N

pjj

m

j

T
jjjjp gffL

,1 1
)/()/()/()/( 0xxxx λη　   (3.2)  

 

),,,1(,0,0))(( pjNjff jjjjj ≠==−− ∗ 　≧　ηεη x      (3.3)  

 

    ),,1(,0,0 mjg jjj == 　≧　λλ      (3.4)  

 

のように与えられる。ここでηj及びλjはそれぞれε-制約式、システムの制約式に対応するラグラン

ジュ乗数である。 

  この条件を満足する最適な組(x＊, η＊, λ＊)に対してε-制約式が活性なものについて 

 

),,,1(,)/)(( pjNjf jjp ≠=−=∂∂ ∗∗ 　ηεx     (3.5) 

 

が成立する。この関係はオレードオフ曲面上の点において、評価 j の劣化に対して評価 p の改善さ

れる比率(トレードオフ比)がラグランジュ乗数として与えられる事を示している。((3.2)式の両辺に右側

から、∂x /∂εjを乗じて、(∂fp/∂εj)＝(∂fp/∂x)(∂x /∂εj), (∂fi/∂εj)＝(∂fi/∂x)(∂x /∂εj)であることに留意して、 

 





=
≠

=∂∂
で活性）　　　

　　　　　　　

jiif
jiif

f ji (1
)(0

/ ε  、及び 0/ =∂∂ jg εｊ
を適用すれば(3.5)式が導かれる。） 
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  ところで、目的空間、ZNにおいて評価レ

ベル間の無差別な選好関係によって規定さ

れる同値な集合、U(f)=c は無差別曲面と

呼ばれる。ZN空間中でこの無差別曲面をト

レードオフ曲面、T(f)=0 と重ねて描けば、

無差別曲面とトレードオフ曲面との交わりは

トレードオフ曲面上の各点を同値類に分割

することができる。従って、選好最適解はこ

のうちから最も選好度の高いものを選べばよ

く、これは両曲面の接点で与えられることが

わかる。(Fig.3.3参照) 

  従って、この点では、 

 

  (∂T(f＊)/∂fj)U=(∂U(f＊)/∂fj)T, (j=1,…, N)    (3.6) 

  

が成立する必要がある。後に示すように、左辺は問題の数学的構造から与えられるので、上の条件

は無差別曲面をトレードオフ曲面上に陽的に表現できれば、選好最適解を純粋に数学的に求めら

れる事を示している。しかし、これは一般には困難であり、選好が陽的に表現しえないことを前提とし

た接近法が必要となる。 

 さて目的 j の改善により効用の増加する割合、(∂U/∂fj)を限界効用と呼ぶことにする。いまトレード

オフ曲面上にある点において、fpが fp=F(f1, f2,…, fp-1, fp+1,…,fN)のように表されたとすると、そこでの効

用は、U(f1, f2,…, fp-1, F(f1, f2,…, fp-1, fp+1,…, f N), fp+1,…, fN)と表わされる。この時の限界効用値 Ujを計

算してみる。 

 

      Uj=(∂U(f)/∂fj)T=(∂U/∂fｐ)(∂F/∂fj)+(∂U/∂fj)=UｐFj+Uj   (3.7) 

 

ここで、(∂U/∂fｐ)=Uｐ、(∂F/∂fj)=Fj、(∂U/∂fj)=Uj とおいた。 

  一方、トレードオフ曲面 T(f)=0上での fjの微小変動に対して同様にして 

 

      (∂T/∂fp)(∂F/∂fj)+(∂T/∂fj)=TpFj+Tj=0    (3.8) 

                                          

 

Fig.3.3  選好最適性の必要条件の説明図 
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が導かれる。ここで、(∂T/∂fp)=Tp、(∂T/∂fj)=Tjとおいた。 

  (3.8)式を Fjについて解き、これを(3.7)式に代入すれば 

 

 Uj=－Up{(Tj/Tp)－(Uj/Up)}     (3.9) 

 

を得る。 

 今度は、無差別曲面 U(f)=c 上にある点を基準として考えてみることにする。この点で、fｐ= G(f1,…, 
fp-1, fp+1,…, fN) と表されたときのトレードオフ曲面は、T(f1, f2,…, fp-1，G(f1, f2,…, fp-1, fp+1,…, fN), fp+1,…, 
fN) と書ける。そこでこの点でのトレードオフ比 Tjを上と同様の展開により計算する。 

 

     Tj=(∂T(f)/∂fj)U=(∂T/∂fp)(∂G/∂fj)+(∂T/∂fj) =TpGj+Tj   (3.10) 

          

     (∂U/∂fp)(∂G/∂fj)+(∂U/∂fj) = UpGj+Uj =0    (3.11) 

                                       

より 

 

     Tj=Tp{(Tj/Tp)－(Uj/Up)}     (3.12) 

 

を得る。Eqs.(3.9), (3.12)を用いて Eq.(3.6)を表せば、選好最適性の必要条件が 

 

     (Tj /Tp)=－(Uj /Up)      (3.13) 

 

で与えられる事になる。 

 一方、トレードオフ曲面上の任意の点について、この点の近傍で他の評価レベルは一定のままに

して、評価pと評価 j間のみに微妙な変化があった場合、この点がひきつづきトレードオフ曲面上にと

どまるためには 

 

(∂T/∂fｐ)Δfｐ+(∂T/∂fj)Δfj = 0、(ただし Δfk=0, (k=1,…, N, k≠p, j)とする)      (3.14) 

 

でなければならない。これを書き直し、先の表記を用いれば 
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     (∂T/∂fj)/(∂T/∂fp)=(Tj/Tp)=－(Δfp/Δfj)=－∂fｐ/∂εj, (Δfj→0)    (3.15) 

 

となる。これを(3.5)と比較する事により 

 

 (Tj /Tp)=ηj
＊      (3.16) 

 

を得る。 

 他の評価レベルは一定にしたまま評価 p だけを Δfｐ良くしたとき、選好レベルが変らないようにする

ためには評価 j を Δfjだけ悪くしなければならないとする。この両者の比 Δfp/Δfj=mpjは限界代替率と

呼ばれる。即ち Δfk=0, (k=1,…, N, k≠p, j)のとき 

 

 (∂U/∂fp)Δfp+(∂U/∂fj)Δfj=0                  (3.17) 

 

であり、先の表記にならえば、UpΔfp+UjΔfj=0と表現される。これより(Uj/Up)は限界代替率 mｐjによっ

て、 

 

 －(Uj /Up)=Δfp/Δfj=mpj                (3.18) 

 

で表される。ここで、Eqs.(3.13)(3.16)(3.18)から、結局、選好最適解は 

 

 ηj
＊= mpj      (3.19) 

 

を満足する必要がある。 

 この条件はもはや無差別曲面の陽的表現を必要としていないことに注意してほしい。探索過程に

おいて、トレードオフ曲面上にある解に対するDMの選好が限界代替率、mpjとして与えられれば、選

好最適化問題を通常の最適化問題として取り扱える事を意味している。また、別の見方をすれば問

題の構造から数学的に決まる量である ηj
＊と人間の主観的基準によって決る量である mpjが一致する

ことが選好最適の必要条件である事を意味している。しかし、上での議論は、あくまである基準点の

近傍という条件のもとで展開されてきた。一般に探索は選好最適解の近傍から始められることはない

ため、最適化手段の通常の山登り法のように、最終解に辿りつくまでにはくり返し探索が必要となる。
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これらのことは、(3.19)式の条件が満たされるまで、多数のマン・マシン間の情報のやり取りが必要と

なることを意味する。そこでいかに効果的に人間の整合的な判断を引き出すかが多目的最適化問

題の解法の最大のポイントであることを示しているといえる。 

 

3．4 多目的最適化の手法の分類 

 

  Fig.3.4に示すように、多目的最適化に関わる手法は既に示したようにパレート解集合を導出して

多目的最適化問題において主眼となるトレードオフ分析を行なう多目的解析と、選好最適化を目指

す多目的最適化に大別される。 

このうち、選好最適化手法としてこれまで種々の解法が提案されているが、これらは DM の価値観

を選好過程とは独立させて決めるものと、選好化過程において決めるものとに大別される。 

 前者の代表的な方法には効用関数法があり、そこでは多属性な効用を統括する効用関数U(f1(x), 
f2(x),…, fN(x))を陽的に表現することが最大の目的となる。そして一担こうした効用関数が求められた

後の取扱は通常（単一目的）の最適化問題に帰着できる。従来、社会経済学の分野で応用されてき

たが、実用的な形で効用関数を表現するためには、かなり限定的な数学的条件4

 一方、後者の方法は、さらに求解過程において対話的な情報を用いるものと、あらかじめ用意され

た情報に基づくものに分けられる。対話的方法は、明示的なトレードオフ分析に基づいた求解が可

が必要であることや、

意思決定の場における状況の変化にともなう選好順序の変化に対する適応性や柔軟性に欠けると

いえる。 

                                                           
4効用独立：ある属性の効用は、その他の属性の効用に依存しない、 

選好独立：ある属性と別の属性間の選好関係はその他の属性の選好レベルに依存しない、などの下で決め

られることが多いが、現実に常にこれらの条件が成立するとは言い難い。 

選好順序の設定 選好情報の取得   主　な　解　法 

多目的最適化 

過程と独立 効用関数の確立 効用関数の最適化

過程と平行
最適重み付け法

非対話的情報 階層的最適化法

目標計画法

対話的情報 

最適化アルゴリズムの拡張

{試行錯誤法,ランダム探索法,

 IFW, SWT,軸方向探索法,傾斜法,

  一対比較法,シンプレックス法,..}

対話的目標計画法

 {STEM, RESTEM,満足化ﾄﾚｰﾄﾞｵﾌ法,..}

過程と一体 一対比較
ＡＨＰ

MOON2(Neural Networkによる価値関数の同定)

多目的解析 視覚情報 ε-制約法，重み付け法, 多目的GA

選好順序の設定 選好情報の取得   主　な　解　法 

多目的最適化 

過程と独立 効用関数の確立 効用関数の最適化

過程と平行
最適重み付け法

非対話的情報 階層的最適化法

目標計画法

対話的情報 

最適化アルゴリズムの拡張

{試行錯誤法,ランダム探索法,

 IFW, SWT,軸方向探索法,傾斜法,

  一対比較法,シンプレックス法,..}

対話的目標計画法

 {STEM, RESTEM,満足化ﾄﾚｰﾄﾞｵﾌ法,..}

過程と一体 一対比較
ＡＨＰ

MOON2(Neural Networkによる価値関数の同定)

多目的解析 視覚情報 ε-制約法，重み付け法, 多目的GA

Fig.3.4 多目的最適化手法の分類 
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能で工学システムでの多くの問題の解法に適すると考えられる。しかし非対話的方法ではよほど目

的間の選好関係が明確でない場合を除いて競合する目的間において、満足のいく調整は難しく実

用的とはいえない。 

一方、パレート解集合を導出することが主目的となる多目的解析は、既に述べたε-制約量と重み

係数のパラメトリック計算によって実現される。さらに最近では、遺伝アルゴリズム（Genetic 

Algorithm; GA）の多点探索法としての特性に注目した手法の開発が多目的ＧＡとして盛んに行なわ

れている。 

ところで、選好最適解を導出するため、非対話的解法のように選好情報の抽出が硬直的でなく、

また対話的解法のように求解過程に密着した応答が求められることもない新しい解法である MOON2 

や MOON2R (Multi-Objective Optimizer in terms of Neural Network of Radial basis function)提案も

なされている。 

以下ではこれらのうち幾つかの代表的な方法を取り上げて解説する。 

 

3．4．1 既定の選好基準に基づく解法 

 

 DM の選好関係を例えば効用関数のように適当な総合的なスカラ評価関数として与えることが可能

な場合には通常の最適化問題から選好最適解を求められる。例えば、各々の目的毎の理想値から

の選好上最適な劣化量や相対的重要度を表わす重み係数が既知であれば、それらをそれぞれ、

(p.3.2)の第2制約式中の各 εk、または(p.3.3)の目的関数中の各 wk に代入すれば選好最適解を得る

一つの定式化が可能となる。基本的にこうした考え方に基づく方法を以下に示す。 

 

① 最適重み付け法 

  何らかの方法で(例えば、既述の AHP などを用いて)目的間の相対的重要度を表わす最適な重み

係数を求め、(p.3.3)に帰着させるものである。 

 

② 階層的(辞書的ルールに従う)方法 

 まず目的を重要度の高い順番に並べ(f1→f2→・・→fN)、第一段階の最適（最小）化を最優先の目的

f1だけを取り上げて行う。次に第2の優先順位の目的 f2についての最適化を条件、f1(x)≦(1+ε1)f1
＊を

新たに付加えた下で行う。ここで f1
＊は第一段階での最適な目的関数値を、ε1は2番目以下の目的の

達成のために許容できる f1
＊からの劣化量を表す。次いで第3順位の目的 f3についての最適化を条

件、f1(x)≦(1+ε1)f1
＊及び f2(x)≦(1+ε2)f2

＊を付加して行なうといった手順を繰り返し、最終段階での最

適化、 
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  (p.3.4) Min fN(x)  subj. to  fi(x)≦(1+εi)fi
＊,(i=1,…, N－1), x∈X    

 

の結果を選好最適解とする。 

 

③ 理想値からの最短点に求める方法 

 適当な一つの理想点f＊を設定し、これに最も近い点を選好最適解とする方法である。決定規範と

して一般重み付き距離関数d5

 

を導入して以下のように定式化される。 

  (p.3.5)  pp
k

N

k
kk ffwdMin /1

1
}|)(|{*)),(( xfxf −= ∑

=

∗　   subj. to  X∈x  

 

ここで重み係数、wk は既知とする。 

 上で p を変えることで種々の距離概念に対応できる。例えば p=1の時には、(p.3.5)は目標計画法

(Goal programming)の一形態と見なすことができる。ただしこの場合には、(p.3.3)にも帰着されること

から必ずしも非劣解集合の中から選好最適解が得られるとは限らない点に注意しておく必要がある。

また p=∞の時には、いわゆる最大不平最小化戦略となる。 

 ここで示した方法の手法自体は平明で理解され易い反面、選好構造を特定のものに限定している

ことや、設定した重み係数や劣化量とその結果得られる選好解との関係が直接的でないという側面

を持っている。試行錯誤に依らず DM の選好を反映したこれらの正確な設定が可能であるかは一般

に疑わしいにも拘らず、設定が不適切な場合への対応については全く考えられていない。こうした点

から現実に適用する場合の有効性は限定して

考えられるべきである。 

 

3．4．2 対話的解法 

 

 前節での考え方や効用関数法では、なんらか

の形で総括的な価値関数 U(f1(x),…, fN(x))を陽

的に表現する必要があったが、これを現実に行

うためには一般に種々の仮定の下で多くの労力

を要するため、応用には不向きな場合が多い。

以下の方法は U の存在を暗に想 

                                                           
5平面上の異なる三点x, y, z(x, y, z)は同一直線上の点でないとする)に対して、d(x, y), d(y, z), d(x, z)≧0で d(x, 
y)+d(y, z)>d(x, z)が成立するようなdを距離関数と定義する。 

*1 希求水準(上･下限)、限界代替率、妥協幅 

*2 利得行列(理想点、最悪点)、感度、トレードオフ図 

*3 距離･代理価値の最小化、一対比較 

 

存在状況情報*2

提示

調整範囲*1

妥協？

参照

表明

決定則*3

暫定解

始

終
Yes

No

コンピュータ 人間

対話的解法のパラダイム
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定するものの、それを陽的に用いることを前提としない。代りに選好化過程の探索点近傍での局所

的情報に基づいて DM の選好構造を明らかにしながら解を求めようとするものである。従って一般的

な求解手順としては、 

(1) 非劣解の中から候補解をとりあえず決め、その近傍での選好情報を提示する。 

(2) 候補解に対する DM の選好を表明してもらう。 

(3) そこでの応答を反映させ、選好度のより高まった次の候補解を導出する。 

(4) 以上の手順を選好上の満足が得られるまで繰り返す。 

というものとなる。こうしたあたかも計算機と DM の間で対話しているごとく見える手順が対話的解法と

呼ばれる理由となっている。そして現実の工学上の問題解決に対して優れた適応性を持つため、計

算機利用環境の著しい改善にも伴い、これまでに種々の解法が開発され、また応用されてきている。 

 しかし DM は選好に関して局所的な判断しか行わないため、全般としてはそれが不整合であったり、

堂々巡りになっていたりする恐れがある。このため手法の開発に当っては、計算結果としての情報は

出来るだけ判り易く提示するとともに、DM に要求する返答もできるだけ答易い最小限のものに限定

する工夫が求められる。今後の発展においても、コンピュータグラフィックスや知識工学の利用を通じ

た対話の信頼性の向上や負担の軽減のためのマン・マシンインターフェイスの設計が重要な側面を

もつといえる。以下ではこれまで主に工学システムに応用されてきた手法を中心に2ー3の対話的解

法の概説を行う。 

 

① IFW 法 

  Geoffrion らは勾配を利用する単一目的

下での最適化アルゴリズム、Frank-Wolfe

法を拡張することを試みた。そこでは価値

関数、U(f1(x), f2(x),…, fＮ(x))の存在を暗に

仮定して、f に関しての微分可能性と単調

増加性を前提とした対話型手法、IFW 法

(Interactive Frank-Wolfe Method)を開発し

ている。 

  いまある与えられた実行可能解、x0に対して選好関数 U (f(x))の x0近傍における一次近似は 

 

 U(f(x))＝U(f(x0))＋▽xU(f(x0))(x－x0)                 (3.20) 

 

で与えられる。これから x0において U を最も効率的に増加させる方向は、次の方向発見問題によっ

て与えられる。 

 

Fig.3.5 IFWにおける限界代替率ベクトル 
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   (p.3.6)  Max ▽xU(f(x))x  subj. to  x∈X 

 

ところで▽xU(f(x0))は、DMの選考上の判断に基づいて決められる限界代替率mij(Fig.3.5 参照)を用

いて、 

 

     ∑
=

∇∂∂=∇
N

j
jxijix fmfUU

1
00 )()/())(( xxf     (3.21) 

 

と表現される。一般に U は f に関する単調増加関数と仮定してよいので、(∂U/∂fi)は常に正となり、

(p.3.6)は次の問題と等価となる。 

 

   (p.3.6’)  Max xx 







∇∑

=

N

j
jxij fm

1
0 )(   subj. to  x∈X 

 

この最適解を x＊とすれば、点 x0における次の探索方向は、d＝(x＊-x0)で与えられ、価値関数

U(f(x0+td))が最大となるステップ幅 t の一次元探索を経て次の探索点が求められる。ここでまた方向

発見問題に戻り同様の手順の繰り返しによって

選好最適点が求められる。 

 IFW 法は、 

(1) 探索中の解のパレート最適性については

配慮されていない、 

(2) 一般に限界代替率 mijを直接与えるのは困

難である、 

(3) 一次元探索における選好に関する判断が

多数回必要となる、 

という求解上の問題点が指摘されている。 

 

② SWT 法 

  これに対して、Haimesらは SWT法(Surrogate 
Worth Tradeoff Method)を提案している。

Eq.(3.18)で示したように、選好最適点でのみ限

界代替率とトレードオフ比は一致し、それ以外

では互いに異なる。この事実はトレードオフ比
Fig.3.6 SWT法のアルゴリズムの図的解釈 
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が限界代替率と等しくなる点を見つけ出せば良いことを示しているが、限界代替率を直接与えるの

は困難であるためそのままでは利用し難い。そこでトレードオフ比と限界代替率の差を代理価値

(Surrogate Worth)、Wpj=(Tj/Tp)-mpj, (j=1,…, N, j≠P)として定義し、これに基づいて選好上の判断を

DM に求めるものである。実際には DM に fjを1単位増加する代りに fpを ηjだけ減少させるようなトレ

ードオフに対する評価を－10～10の得点として答えてもらう。ここで ηjは Eq.(3.16)よりトレードオフ比

と等しくパレート最適解を ε-制約法で求める際、ラグランジュ乗数として与えられる。そして ε-制約量

を変化させることでトレードオフ曲面上の幾つかの点(k=1,…, K)を導出し、これらの各点での Wpj(εk)
の値を答えてもらう。これらの結果から、曲線の当てはめや回帰分析を利用して Wpjと εk の関係をモ

デル化する。次にこれから Wpj(ε)=0, (j=1,…, N, j≠p)となる点を求める。これより選好最適点が得られ

ることは明らかである。(Fig.3.6 参照) 

 その後の研究において、これらの方法に対して幾つかの改良法が提案されている。しかし、これら

の方法は本質的に勾配に相当する微分量の決定を、直接的にせよ間接的にせよ人間の判断に委

ねている点の問題点があることが指摘されている。 

 

③ STEM 法 

  一方、Benayoun らは特に多目的線形計画問題に着

目して STEM(STEp Method)と呼ばれる手法を開発して

いる。まず、各々の目的関数だけに着目した単一目的

最適化を評価関数の数だけくり返すことによって利得行

列(Fig.3.7 参照)を作成する。その i-j 要素は第 i の目的

関数の最適化から得られた最適解 xi
＊で第 j 目的関数を評価したときの値となる。従って、その対角

要素からなるベクトル(f1(x1
＊), f2(x2

＊),…, fN(xN
＊))Tは一つの理想点を与える。 

  次に MinMax 基準でこの理想値に最短の点を暫定の選好解とする。この時の結果には、目的の

達成度を相互に比較した時に満足なものも不充分なものも含まれていると考えられるため、まず DM
にこうした達成度に関する分類をしてもらう。さらに満足と判断された目的 i（∈Isat）に対しては、不充

分な目的の改善のために許容できる妥協の限界△fiを答えてもらう。そして、以後の調整過程におい

ては、そこでの応答結果を制約条件 fi(x)< fi*+△fiとして取り扱い目的自体からははずすことにする。

一方、不満足とされた目的は調整対象として残し、利得行列の作製に戻って次の候補解を決める。

この手順を全ての達成が満足と判断されるまで繰り返す。 

 この手法は探索が進むにつれ理想点の設定が不適当となり易く、また途中の応答が不適当であっ

た場合などには、選好基準に沿った解がうまく求められなくなるという弱点を持つ。しかし対話時に要

求される判断は、先述の方法のように微分量の判断を必要とせず、ふだん人間が価値判断をする場

合によく用いられるものである。このため、後に参考点法と総称され、現実への適用性の高さの認め

られている手法の開発へつながっていったといえる。 

 

 

Fig.3.7 利得行列 

 



 
32 

④ 参考点法 

  一般に、理想点は達成不可能な究極の目標値として設定される。これに対してより現実性の高い

目標値として、希求水準を与えることも可能である。実際、DM は意思決定に際して目標毎の希望す

る達成レベルの上下限値を暗に想定していることが少なくない。こうした希求水準や理想点等、総称

して参考点と呼ばれる基準は DM にとってトレードオフ分析上の情報として非常に利用価値の高い

ものである。これらの参考点を利用した解法は広く参考点法と呼ばれ、RESTEM(REvised STEM)、
理想点調整法、満足化トレードオフ法など幾つかの手法が開発されている。大概的にいってこれら

の手法間の差は、トレードオフの調整時における参考点の利用の仕方の違いにあり、その求解手順

の概要は以下のように表現できる。なおここで上添字 k は反復回数を表わす。 

(1) 各目的毎の最適化の結果などから参考点を設定する。(理想点を f＊k、その他の希求水準を fk で

表わす。) 

(2) 参考点や(目的間の関数値の)利得行列を利用して、目的間の重み係数、wk を決める。 例えば

wi
k＝1/(fi

k－fi
＊k)とすればよい。 

(3) 希求水準を満たすもののなかから、理想点からの距離(未到達度)を最小とする解を求める。ここ

で適当な収束判定を満たせば終了する。求解には、L∞距離(Min Max 基準)が多くの手法で採用さ

れており、Ｌ∞最適化問題と等価な問題は 

 

   (p.3.7)   Min λ subj. to  
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で与えられる。ここで希求水準に関わる制約式が追加されている点に注意してほしい。この解を xkで

表わす。 

(4) f(xk)についての選好を DM に問う。一般には、“希求水準以上、以下、どちらでもないもの”の3
つに目的値を分類し、前二つに対して新しい希求水準を問う。それに基づいて参考点の更新を行い

ステップ(2)に戻る。 

 ここでの応答の際、DM は(p.3.7)の希求水準に関する制約式から求められるトレードオフ比や利得

行列から得られる選好情報を利用すること

ができる。 

 なおステップ(4)での参考点の更新は、満

足化トレードオフ法、理想点調整法ではそ

れぞれ希求水準、または理想点だけを対

象としている。これに対し、RESTEM では希

求水準の調整とともに理想点をより実現性

の高い点へ移す事も行われる。 
Fig.3.8 対話型シンプレックス法 
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⑤ 対話型シンプレックス法 

  非対話型手法での最適重み付け法や階層的方法において最適な重み係数や劣化量が決まれ

ば選好最適解が得られる。この事に着目して最適化手法の直接探索型のアルゴリズムであるシンプ

レックス法を対話型手法として拡張したものである。(Fig.3.8 参照) どちらを採用するかによって探索

は、w 空間となるか、ε空間となるかの違いとなる。ε空間でその手順は以下のように要約される。  

(1) 探索空間上で N+1個の端点(ε1,…, εN＋1)を与え、初期シンプレックスを決める。 

(2) 各端点に対応するε-制約問題を順次解き、それぞれの場合の非劣解を導出する。これらの解

を xk, (k=1,…, N+1)で表わす。 

(3) f(xk), (k=1,…, N+1)を DM に示し、暗に想定された選好関数値 U(f(x))の下での選好上の順序付

けをする。 

(4) 一定の収束条件が満たされていれば終了する。そうでなければ(3)での順序に従って通常のシ

ンプレックス生成手順(反射、拡張、収縮が知られている。)によって新しい端点を求め、その点に対

応する非劣解を導出してステップ(3)へ戻る。 

 上の手順中では非劣解の導出に ε－制約法を用いたが、w空間では重み付け法を用いればよい。

後者の方が、Σiwi=1, (wi≧0)であるため探索空間が明確に規定されるため適切とされている。しかし

前者の場合でも、目的毎の満足水準 fiを与えれば、0≦εi≦fi－f＊i (i=1,…, N)によって探索空間の範

囲が限定できる。さらに得られる解が満足水準である事を常に保証できるうえに、目的関数の凸性の

条件によらず非劣解を導出できるため、応用上はむしろ好ましいと考えられる。 

 また、ステップ(3)では一見、選好関数の陽的な表現が必要かのように見えるが、単に各 f(xk)に対し

ての選好上の順序付けだけが必要となるので実際には不要である。一般に、順序付けは各 f(xk)間
での一対比較によって行われる。これに併合挿入法を用いれば効率的で、N 個の順序を決める時の

比較回数の最大値は、∑
=

N

k
k

1
2 |)4/3(log| である事が知

られている。 

 ところでこの方法の対話時における DM の負担は

一般に少なくない。特に、目的関数の数が増えるに

従って、一対比較における整合性の悪化と共に飛

躍的に大きくなる。しかし、目的関数の数が高々、数

個までであるような工学システムの設計においては、

そうした労力も許容限度内に押さえられる。従来の

最適化技法になじみのある者にとっては、理解の容

易な手法といえる。 

 

⑥ MOON2R Fig.3.A1 RBFネットワークの構造 
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DMにとって直接的な判断に比べて相

対的な判断の方がはるかに容易である。

この点に着目し、一対の解候補（以後、

代替案）間での選好に関する比較からDM

の選好に関する情報となる教師データ

を収集し、ニューラルネットワーク（NN）

の一種であるRBFN(Fig.3.A1)を用いて

価値関数を以下のように同定する。 

Step1：目的空間における理想点Futoと最

悪点Fnadを決める。そして、理想点

と最悪点の間で適度に分散した適

当数の代替案Fi (i=1,…,k)を決める。 

Step2：代替案の任意の組に対するDMの

好みをAHP（Analytic Hierarchy 

Process）同様の自然言語の修飾語

(Table 3.A1)を用いて一対比較し、

一対比較行列(Table 2)を作成する。そのi-j要素aijは代替案iの代替案jに対する好みを数

量化したものといえる。 

Step3：得られた一対比較値行列に整合性があるかを調べる。整合性がなければStep2に戻り

一対比較をやり直す。 

Step4：一対の代替案（入力）と一対比較値（出力）の正規化を行った後、これらを教師デー

タとしてRBFNの学習を行う。 

この方法ではDMは選好過程とは独立して自己のペースで選好に関する十分な判断が行える。

その際求められる判断も簡単であり、少ない負担で実行可能である。そしてRBFNの学習後は 

12},{: RaRFFV ij
Nji

RBF ∈→∈          (3.A1) 

となる価値関数が同定されたことになる。そして(2)式の関係に留意すれば任意の代替案間の

順序づけは、入力層の片方の代替案を常にある一定の基準値FRに固定することでRBFNの出力

値の大小に基づいて行うことができる。 

 

   ji
jk

kj
RBFik

ki
RBF FFaFFVaFFV ⇔=>= ),(),(     (3.A2) 

 

Fig.3.A2 Flow chart of the proposed approach 
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 上述の価値関数の同定を経て先の多目的最適化問題は(p.2)のように表現し直される。 
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 ここでは一旦、決定変数xが与えられれば､それに対する多目的評価が可能となるため、対

話的手法では適用困難であ

ったGA, SAなどを含めた

種々の最適化手法が適用可

能となる。そしてDMの価値観

を反映した唯一の選好最適

解を得ることができる。 

 

3．5 応用例 

 

3．5．1 原油分解精製プロセ

スの操業上の安定性を考慮し

た最適設計 

 §3.4.1で述べたように本問

題の解法に用いられている階

層的最適化手法の適用範囲

は、限定して考えられるべきで

ある。しかし、多目的最適化手

法の化学プロセスへの適用例

としては最初のものであり、実

際的な問題解決法の一つとし Fig.3.9  原油分解生成プロセスのフローシート 
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て、数理的定式化が不可能な場合の参考となる点があるので以下に紹介する。 

 Fig.3.9にプロセスの概要を示す。そこでは原油、メタン、及び水蒸気を原料として、3品質のガソリン、

ジェット燃料油、ケロシン、及び燃料油の計６品種の組成の製品が製造される。この数式モデルは1

日あたりの原油の処理量を基準として、各ユニット毎の物質収支に関する７個の等式と、製品の生産

量に関する3個の不等式により構築される。ここではこれを便宜的に、 

 

 Σjaij(p)xj－bi≧0   (i=1,…, 10)     (3.22) 

と表わす。式中、xjは図中に示した設計変数を、aij(p), biは係数であり、前者はm 次元の不確定なパ

ラメータ p を含む事を表わしている。(基準値を p0とする。) 

 このプロセスで最も重要な評価関数は、製品の売り上げ、原料費、運転費及び設備費からなる年

間の総利益であるとする。これも不確定パラメータに影響されると考え、f1(x, p) と表わす。次いで重

要な評価関数は、モデルの不確定性に対するプロセス操業上の安定性と考え、これを m 個の不確

定パラメータに対する評価関数感度係数の大きさ 

 

   fi(x, p0)＝｜∂f1(x, p)/∂pi｜p0   (i=1,…, m)          (3.23) 

 

から推定する。さらに、不確定パラメータの中で最も主要な一つを pkとした時、第二番目の評価関数

f2(x, p0)は、|∂f1/∂pk | p0で与えられる。結局、問題は f1, f2をそれぞれ最大、最小化する二目的最適化

問題に帰着される。 

 ここでの求解手順の第一段階では、問題 

 

      (p.3.8)  Max  f1(x, p0)    subj. to  Eq.(3.22) 

 

が解かれる。この最適解を x＊とする時,第二段階の問題は、f1(x＊, p0)から許容できる劣化の程度 ε を
与える事により 

 

      (p.3.9)  Min  f2(x, p0)    

                  subj. to   Eq.(3.22)  &  f1(x, p0) ≧(1-ε/100)f1(x＊, p0) 

 

と定式化される。 

 第二段階での劣化量を二通りに変化させた時の求解結果を Table 3.1に示す。(  )内の数字はそ

れぞれ第一段階での値を基準とした劣化率(%)と改善率(%)を表わしている。最適点近傍での評価
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関数感度は一般に高いといえないため、本例では、f1を少し劣化させることで f2のかなりの改善が望

める、といった多目的最適化の効果が必ずしも一目瞭然とは示されていない。 

  また実質的に(p.3.9)は、ε-制約問題と等価であり、これより一つの非劣解が得られるが、具体的

に ε をどのように与えるかについては原報では触れられていない。しかし、この決定は同一尺度で比

較不可能な二つの指標を評価するのに、本法では、“利益を幾ら犠性にして操業上の安定性を向上

させるか”という直接的な形で選好を問えるので、重み付け法のように間接的にしかできない場合に

比べて格段に容易であるといえる。 

 

                  Table 3.1       数値計算結果の例                          

ステップ Max f1(x) (劣化率%) Min f2=(∂f1/∂p2) (改善率%) 

Primary 1.036x108 (－) 5.12x1010 (－) 

Secondary(ε=4) 0.948x108 （8.5) 4.99x1010 (2.54) 

Secondary(ε=15) 0.779x108 (24.8) 4.60x1010 (10.1) 

 

      

 

3．5．2 トルエン脱アルキル反応プロセスの信頼性を考慮した最適設計 

 

 Fig.3.10にトルエンとスチームを原料と

するベンゼン製造プロセスのフローシート

を示す。ここで、熱交換により予熱された

原料は二段の反応器で脱アルキル化さ

れる。生成ガス中に副製する水素ガスや

低分子ガスは、それぞれ高圧、低圧の分

離器で除去される。さらに、未反応トルエ

ンは蒸溜塔で分離回収され、原料の一部

に加えられる。 

 このプロセスの基本設計上の評価項目

として、経済性とそれに競合する安全性

を考える。さらに、経済性評価は投資コス

ト(f1)と年あたりの運転コスト(f2)に分け、そ

れぞれを個別的に取り扱い、両者間の適切な配分を問題とすることにする。ここで、前者は、各プロ

セスユニットの投資コストの和として、後者は、使用ユーティリティコストの和として与える。 

Fig.3.10 トルエン脱アルキル反応プロセスのフローシート 
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 一方、安全性はプロセスの信頼性として次式で評価される。 

 

f3＝{1-(1-RR)Pr}RD       (3.24) 

 

ここで、RR、RDは、それぞれ反応器、蒸留塔サブシステムの信頼性を、また Pr は低圧分離器の蒸留

滞時間内に反応サブシステムに起こったトラブルを修復できない確率を表わす。 

 プロセスモデルは各プロセスユニット毎の熱、及び物質に関する収支式や単位操作に関する化工

計算式から構成され、非線形の代数方程式 g(x, D, p)≧0として表わされる。ここで、x はシステムの

状態変数を、p はパラメータを表わす。また、D は、トルエン／スチーム比、蒸留塔還流比、及び低圧

分離器の容量を表わす設計変数である。 

 システムのパラメータ p に適当な値を与える事により、最終的に問題は、以下のように定式化され

る。 

 

      (p.3.10)  {Min(f1, f2), Max f3} 
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ここで ii DD , は、それぞれ各設計変数の許容値

域の上、下限値を表わす。 

 解法としては対話型シンプレックス法が採ったと

きの数値計算における探索過程の一例を

Fig.3.11に示す。探索初期で変更幅の大きかっ

た選好化が、探索の進展に従って収束していく

様子と共に、経済性と信頼性間においては顕著

で、投資コストと操業コスト間では弱いトレードオ

フの存在が観察される。また、ここでの選好最適

化の結果は信頼性向上のための投資を積極的

に行っているといえる。 

 

3．5．3 ブタジエン製造プロセス

の柔軟性を考慮した最適設計 

 

Fig.3.11  対話型シンプレックス法による探索課程 

 

Fig.3.12  ブタジエン製造プロセスのフローシート 
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 Fig.3.12に示すブチレンの接触脱水素によるブタジエン製造プロセスにおいて、Qi(i=1-3, 5)はそれ

ぞれ供給原料、生産燃料ガス、供給エネルギー、及び製品ブタジエンの量を表わす。このプラントの

設計変数は転化装置規模 x1と回収装置規模 x2であり、それぞれ生産量 Q5と Q5=t1x1、回収率 r と
r=t2x2のように関係付けられているとする。さらに操作変数としては転化装置のブチレンの転化率 y を
考える。 

 プロセスの制約条件は製品の需要量、原料、エネルギーの供給量、転化率の操作範囲、及び回

収率の上限に関して存在する。また転化器へ供給される原料中の n-ブタン量 Q4の含有率は一定値

以下でなければならない。そして、プラントの運転データより、Qi(i=1-4)は、Q5, r, y の関数として次ぎ

のように表わされるとする。 

 

 Qi=pi1Q5+pi2r+pi3y  (i=1～4)            (3.25) 

 

 上式をプロセスの制約条件に代入して整理すれば、システムモデルは 

 

 ai1x1+ai2x2+ai3y≧bi (i=1～7)         (3.26) 

 

のような線形不等式で表わされる。ここでパラメータ、a21, 
a41に同定上の主要な誤差があり、プロセス環境の外乱上、

原料やエネルギー供給量の上限値 b2, b4にも変動がある

とする。 

 そしてプロセスの評価は、製品の売上高、操業コスト、及

び設備投資コストによって評価される経済性によって行わ

れるとする。さらに所定の範囲内であれば先の不確定な

パラメータがどのように変動しても、プロセスが常に実行可

能である事が保証されるような柔軟な設計が求められてい

るとする。このための補償を設計と操作の協調によって行

う場合、設計側の要求は、設備投資コストに、一方、操作

側は、パラメータ変動に応じて求められる基準値からの変

更量に反映される。 

 以上の状況設定の下での問題は次の二目的線形計画問題として定式化される。 

 

   (p.3.11)  Max   { ykxkxkf 322111 ++= , )(2
−+ +−= µµf } 

Fig.3.13  二目的間のトレードオフ曲線 
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ここで f1は経済性を表す関数で、μ＋, μ－は基準

時の操作からそれぞれ＋、－側への更新量で、

上限値
+

μ , 
−

μ を持つとした。また制約式中、

第一式はパラメータの基準時、第二式は変動

時のシステムの実行可能領域を一般的に表し

たもので、後者に不変実行可能領域表現を与

えることによってパラメータ変動に対しての実行

可能性を常に補償できる。 

ところで不変実行可能領域表現は、パラメー

タ変動範囲を－αi≦δai≦αi, －β≦δb≦β とする

とき線形不等式、ai
Tx≦bi, (i=1,…, m)に対して、 

 

     (ai＋αi)Tx≦bi－βi, (i=1,…, m)     (3.27) 

 

と表される。 

 Fig.3.13に ε-制約法を用いて、評価関数 f1, f2間のトレードオフ曲線を求めた結果を示す。これより

操作量の変更幅を小さくするためには収益を犠牲にする必要があり、反対に収益に重点を置く場合

には変更幅を大きくなる事が知れる。またトレードオフ曲線上の点, Tight における許容領域の変化

の様子をFig.3.14に示す。決定点O (=B)は最悪のパラメータ変動が起こっても(この時の許容領域は

ABCD)、基準操作のままで実行可能である事が知れる。この例は、パラメータ変動に対する補償をも

っぱら設計面で考慮している例といえる。 

 

3．5．4 その他の応用 

 

 プロセスシステムの設計問題におけるこの他の応用例としては、 

(1) 熱交換器システムにおける熱の有効利用性と総伝熱面積(経済性)間のトレードオフに着目した

もの、 

(2) プロセスの操作性(Operability)の良さをプロセスの単純さで代表させ、熱交換器数を最小にする

事を経済性評価とともに考察したもの、 

Fig.3.14 柔軟性を考慮した最適決定の許容領域 
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(3) 管型反応器をとりあげ、設計段階で最適制御を考慮する事により、投資コスト、収益、及び製品

品質を評価項目として検討を加えたもの、などがある。 

 また、選好化を階層的にとらえ、下位レベルでは上位レベルから配分された経済的制約の下で各

サブシステム毎の目標の最適化を行い、上位レベルでは各サブシステムの目標の達成が最も選好さ

れるように配分の調整を行う事を機能とする考え方も報告されている。 

 一般の設計問題では、例えばレンズの設計のように数十もの評価項目が存在するといわれている

ものも存在するが、プロセスシステムの設計では、高々数個までの評価項目を設定するのが妥当で

ある。特に、基本的構造の設計、制御システムの設計、スタートアップ／シャットダウンシステムの設

計といった如く、段階的に設計を進めていく手順においては、例題でみたような経済性と信頼性、或

いは経済性と操作性などの2目的最適化問題を各段階毎に解けば良いという考え方もある。このよう

な場合には、特に多目的最適化手法の適用を検討しなくてもトレードオフ曲線の解析から選好最適

解を決める事ができる。現実的な問題解決においては、エンジニアリングの組織やそこでの機能分

担の特性に応じて価値構造の分析を充分に行い、問題の範囲と定義を明確にする事が重要である

といえる。 

 

4． おわりに 

 

多目的評価の下での最適化問題の定式化の特徴を、再度、単一目標の下での問題との関連に

おいて要約すれば以下のようである。 

従来、経済性以外の評価項目の多くは、その満たすべき条件を上・下限値をもつ制約条件として

与える事により考慮されていた。そして、最適時にこれらが実際、活性制約なのか不活性制約なのか

についてはあまり関心が払われず、すべての条件を満たす結果が得られた事で満足していた。しか

し最適時に活性な制約式は、評価関数値と明かに競合するので、その制限値を緩和して改めて最

適化をすれば以前より評価関数値をさらに良くできる。この時、先に不活性であったもののなかから

新たに活性になるものがでてくれば、今度はそれを緩和する事でさらに評価関数値の改良が可能と

なる。しかしこの結果によって、評価関数値は期待以上に改良された反面、先の制限を緩和しすぎ

たと意思決定者が感じたとする。しからば、制限をもう少し元に戻して厳しくしてみよう・・といった如く

の試行錯誤が決定の質を上げるために実際には必要となる。ならば、評価すべき項目を制約条件と

して固定して考えるよりは、それらも評価関数に含めて取り扱い、同じ検討の場で調整を計った方が

より好ましい結果を得る事が期待できる。こうした検討を数学的手順に従って行おうとするのが、多目

的最適化手法といえる。 
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